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Analysis of the intraspinal calcium dynamics and its implications
for the plasticity of spiking neurons
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The influx of calcium ions into the dendritic spines through the N-methyl-D-aspartate~NMDA ! channels is
believed to be the primary trigger for various forms of synaptic plasticity. In this paper, the authors calculate
analytically the mean values of the calcium transients elicited by a spiking neuron undergoing a simple model
of ionic currents and back-propagating action potentials. The relative variability of these transients, due to the
stochastic nature of synaptic transmission, is further considered using a simple Markov model of NMDA
receptors. One finds that both the mean value and the variability depend on the timing between presynaptic and
postsynaptic action potentials. These results could have implications for the expected form of the synaptic-
plasticity curve and can form a basis for a unified theory of spike-time-dependent, and rate-based plasticity.
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I. INTRODUCTION

Calcium ions are ubiquitous mediators of metabo
change in many cellular systems. In the cortex, they are
lieved to be the primary chemical signal for the induction
bidirectional synaptic plasticity@1–3#, which is widely ac-
cepted to be the basis for many forms of learning, mem
and development.

Experimentally, bidirectional synaptic plasticity can be i
duced by various different induction protocols@4–6#, includ-
ing the recently characterized spike-time-dependent pla
ity ~STDP! @7,8#. In this induction method, if a presynapt
action potential occurs within a window of a few tens
milliseconds before a postsynaptic action potential (Dt
.0), long-term potentiation~LTP! is elicited; if the order is
switched (Dt,0), long-term depression~LTD! happens. In-
terestingly, STDP and many other induction protocols sha
common property, which is their dependence on the amo
of integrated activation of the N-methyl-D-aspartate rec
tors~NMDAR! during conditioning. NMDAR are natural co
incidence detectors; their activation relies both on the e
ciency of neurotransmitter release from the presynaptic
and on the level of depolarization of the postsynaptic c
Most remarkably, they are permeable to calcium ions, wh
suggests a functional link between calcium influx throu
NMDAR and the induction of LTP and LTD.

Recently, several dynamical models have been propo
to account for STDP@9–12#, the relationship between STD
and rate-based models has been examined using aver
methods@13,14#, and there have been attempts to account
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receptive field formation on the basis of STDP@15#. We have
recently proposed a unified theory of synaptic plasticity@16#
based on the following assumptions:~1! the level of intrac-
ellular calcium concentration determines the sign and m
nitude of synaptic plasticity@17–19#—when calcium falls
below a thresholdud , no plasticity occurs, when it falls be
tweenud andup , up.ud , LTD is induced, and for calcium
aboveup , LTP is induced;~2! the relevant sources of ca
cium are the NMDA channels; and~3! dendritic back-
propagating action potentials~BPAPs! contributing to STDP
have a slow ‘‘after-depolarizing’’ tail component. We hav
shown that these simple assumptions are sufficient to
count for the various experimental plasticity-induction pr
tocols. In addition, this model has also produced previou
uncharacterized predictions, such as:~a! the shape of the
STDP learning curve should be frequency-dependent and~b!
there should be a novel form of spike time-dependent L
for Dt larger than the LTP-inducing intervals. Recent expe
mental results are consistent with these predictions@20,21#.

In this paper, we present a systematic calculation of
calcium transients as a function of prespike and postsp
timings, as well as of the neuronal firing rates. In Sec. II
derive the solution for the mean calcium transients in
simplest case where the BPAP consists of a single expo
tial, and show that its dependence onDt is rather intuitive. A
more realistic approach is taken in Sec. III, where the BP
is composed of a sum of two exponentials with different tim
constants. This more complex assumption is in closer ag
ment with our previous work@16# and is consistent with
experimental observations@22#. The analysis shows that th
slow component contributes for different calcium levels
the baseline condition~pre only! and the post-pre condition
(Dt,0), while the fast component sharpens the differen
of the calcium levels in the transition between post/pre (Dt
,0) and pre/post (Dt.0) conditions. The sharpness of th

y,
,
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transition is shown to be further enhanced by the appropr
choice of the calcium decay time constant. For completen
in Sec. IV, we study the effects of calcium accumulation d
to repetitive firing which affects the rate-dependence of so
plasticity-induction protocols including the STDP learnin
window. Finally, in Sec. V we take into account the stoch
tic properties of synaptic transmission and estimate the t
by-trial variability of the calcium transients. This variabilit
can be significant if the number of postsynaptic NMDAR
each spine is small. Our analysis demonstrates that this
ability depends onDt, increasing withDt for Dt.0. These
results could significantly alter the form of the STDP cur
under different experimental conditions.

II. ANALYSIS OF CALCIUM INFLUX THROUGH NMDAR

The postsynaptic calcium ions are removed from the
traspinal compartments both through diffusion and throu
binding to calcium buffers. Let these phenomena be cha
terized by a single time constantt, and assume that th
calcium dynamics follow a first-order linear differenti
equation,

d@Ca#

dt
5I ~ t !2

1

t
@Ca#, ~1!

where@Ca# is the intracellular calcium concentration,I (t) is
the inward calcium current, andt is the time constant of the
passive decay process. This simple dynamics is to the
approximation consistent with experiments@23,24#. Given a
initial condition @Ca#~0!, Eq. ~1! has a solution of the form

@Ca#~ t !5e2t/tF E
0

t

et/tI ~ t8!dt81@Ca#~0!G . ~2!

Note that if the calcium current is a superposition of se
rate current sources, the calcium concentration can als
decomposed into such a sum.

In this paper we consider the NMDA channels as the s
source of calcium currents. These channels are volta
dependent@25#, and have a long open time that can usua
be described as a sum of two exponentials@26#, thus their
currents can be generally described as

I ~ t,$tpre%,$tpost%!5ḡH~V! f , ~3!

where$tpre% and $tpost% are the sets of times of presynapt
and postsynaptic action potentials~APs! that occurred prior
to time t and ḡ is the mean total conductance of the popu
tion of NMDAR in a synapse. TheH-function represents the
voltage-dependence of calcium influx through NMDAR, a
f is the fraction of NMDAR in the open state. It is easy to s
that V5V(t,$tpre%,$tpost%) and f 5 f (t,$tpre%), where the
time-dependence off is a double exponential.

In this section, however, we will focus on the simple sc
nario of a single pair of presynaptic and postsynaptic A
where the dynamics of the NMDAR and the BPAP are d
scribed as single exponentials with time constantstN and
tB , respectively. We will leave the more realistic tw
component-BPAP case to the following section. Unless o
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erwise mentioned, we replace the stochastic variablef by
its mean without change of notation. Thus, for a single p
synaptic spike at timetpre, we can write

f ~ t,tpre!5mQ~ t2tpre!e2(t2tpre)/tN, ~4!

whereQ is the Heaviside function andm is the probability
that a channel will open given a presynaptic AP. Let us
sume that the postsynaptic depolarization is dominated
the BPAP. Therefore,V in Eq. ~3! can be written as

V~ t,tpost!5VR1VB~ t ! ~5!

5VR1vQ~ t2tpost!e2(t2tpost)/tB, ~6!

whereVR is resting membrane potential, andVB(t) describes
the dynamics of a BPAP with magnitudev due to a postsyn-
aptic AP occurring at timetpost. In general,H is a nonlinear
and nonmonotonic function ofV. For tractability, we will
make a major simplification by linearizing theH function in
the interval@VR ,VR1v#,

H~V!5a1bV. ~7!

The original H function used and its linear fit are dis
played in Fig. 10. In Appendix B, we assess the validity
this approximation. By using Eqs.~4! through ~7!, Eq. ~3!
becomes

I ~ t,tpre,tpost!5ḡ~a1bVR1bvQ~ t2tpost!

3e2(t2tpost)/tB!mQ~ t2tpre!e2(t2tpre)/tN

5ḡm~a1bVR!Q~ t2tpre!e2(t2tpre)/tN

1ḡmbvQ~ t2tpost!Q~ t2tpre!

1e2(t2tpre)/tNe2(t2tpost)/tB

5I pre~ t !1I 1/2~ t !. ~8!

The current separates into two components, one that
pends only on the timing of the presynaptic AP (I pre) and a
second, associative term that depends on the relative tim
between the presynaptic and postsynaptic APs (I 1/2). The
associative term will give rise to the differences betwe
pre/post and post/pre conditions, which is essential to ST
learning.

Let Dt5tpost2tpre. It is straightforward to show that

I 1/25H I peak
1 Q~ t2tpost!e2(t2tpost)/t1 if Dt.0

I peak
2 Q~ t2tpre!e2(t2tpre)/t1 otherwise,

~9!

where t1
215tB

211tN
21 , and I peak

1 5I peak
1 (Dt) and I 2

5I 2(Dt) denote the peak magnitudes of the pre/post co
ponent of the calcium current forDt.0 andDt,0, respec-
tively:

I peak
1 ~Dt !5ḡmbve2Dt/tN, ~10a!

I peak
2 ~Dt !5ḡmbveDt/tB. ~10b!
7-2
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ANALYSIS OF THE INTRASPINAL CALCIUM DYNAMIC S . . . PHYSICAL REVIEW E 69, 011907 ~2004!
The dependence of the peak current onDt is quite simple
~Fig. 1!. For Dt.0 it decays exponentially with the tim
constant of the NMDAR open probabilitytN ; whereas for
Dt,0 it decays withtB , the width ofVB(t). It is straight-
forward to see that, ifDt,0 yields calcium levels corre
sponding to LTD, and if to each calcium concentration
associated a degree of plasticity, there should be aDt.0
region that also corresponds to LTD. The difference is th
sincetB!tN , ud in the post/pre region is reached for valu
of Dt much closer to zero than it is for the pre/post regio
Such difference will be even greater in the case where
dynamics of the BPAP is described by two time consta
instead of one~see Sec. III!.

Using Eqs.~8! and~9!, we can rewrite Eq.~2! in terms of
each of the components of the calcium current,

@Ca#~ t !5@Ca#pre~ t !1Q~Dt !@Ca#1~ t !

1Q~2Dt !@Ca#2~ t !1@Ca#~0!e2t/t, ~11!

with

@Ca#pre~ t !5e2t/tE I pre~ t8!et8/tdt8, ~12a!

@Ca#1~ t !5e2t/tE I 1~ t8!et8/tdt8, ~12b!

@Ca#2~ t !5e2t/tE I 2~ t8!et8/tdt8. ~12c!

FIG. 1. Associative component of the peak calcium current a
function of Dt. ḡb51.531023, m50.8, v560 mV, tN5100 ms,
andtB520 ms.
01190
t,

.
e
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Integrating explicitly, we have

@Ca#pre~ t !5ḡm~a1bVR!t2Q~ t2tpre!~e2(t2tpre)/tN

2e2(t2tpre)/t!, ~12a8!

@Ca#1~ t !5I peak
1 t3Q~ t2tpost!~e2(t2tpost)/t12e2(t2tpost)/t!,

~12b8!

@Ca#2~ t !5I peak
2 t3Q~ t2tpre!~e2(t2tpre)/t12e2(t2tpre)/t!,

~12c8!

wheret2
215t212tN

21 andt3
215t212tN

212tB
21 .

Examples of calcium transients are displayed in Fig.
where @Ca#pre/post5@Ca#pre1@Ca#1 and @Ca#post/pre

5@Ca#pre1@Ca#2 . Naturally, the@Ca#pre term is identical
for the pre-post@Fig. 2~a!, Dt510 ms] and the post-pre@Fig.
2~b!, Dt5210 ms] conditions~dashed line!. The difference
between these conditions lies in the associative term~dash-
dotted line!. @Ca#1 raises at the pointt5tpost and @Ca#2

raises att5tpre, their relative amplitudes being determine
by I peak

1/2 ~Fig. 1!.

III. A BACK-PROPAGATING ACTION POTENTIAL WITH
TWO COMPONENTS

The model described in the preceding section assu
that VB(t) decays exponentially with a single time consta
However, there are experimental indications that an ad
tional slow after-depolarizing component exists in some c
bodies@27# and dendrites@22,28#. The dynamics of the BPAP
defines to what extent the postsynaptic spike-timing intera
with the presynaptic one; in particular, a slower decay
process ensures that such interaction spans for a perio
tens of milliseconds, as required by the STDP learning ru
In this section, we consider thatVB(t) is composed by a sum
of two exponentials, with a slowtB

s and a fasttB
f time con-

stants, respectively. Equation~6! should therefore be rewrit
ten as

V~ t,tpost!5VR1vQ~ t2tpost!

3@v fe2(t2tpost)/tB
f
1vse2(t2tpost)/tB

s
#, ~68!

where vs, v f , tB
s , and tB

f are the relative amplitudes an
time constants of the slow and fast components ofVB(t),
and

a

-
ne
a-
FIG. 2. The dynamics of the total calcium
~solid line! is composed of two different contri
butions: the calcium due to the prespike alo
~dashed line! and the calcium due to the associ
tion of prespike and postspike~dash-dotted line!.
aḡ51.0331021, VR5265 mV, t550 ms,
@Ca#~0!50 and the onset oftpre is at time zero.
The remaining parameters are as in Fig. 1.~a!
Dt510 ms, ~b! Dt5210 ms.
7-3
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respectively, (vs,v f).0,vs1v f51. Analogously to the preceding section, the calcium currents from Eq.~9! can be separated
into two components,I pre and I 1/2. I pre is identical to what we have derived before, whereasI 1/2 reads

I 1/2~ t !5H Q~ t2tpost!I peak
1 @v fe2(t2tpost)/t1

f
1vse2(t2tpost)/t1

s
# if Dt.0

Q~ t2tpre!@ I peak
2 f v fe2(t2tpre)/t1

f
1I peak

2s vse2(t2tpre)/t1
s
# otherwise,

~98!

FIG. 3. ~a! Associative component of the pea
calcium current as a function ofDt, for v f

50.75,vs50.25,tB
f 53 ms, andtB

s 535 ms. The
dotted line shows the previous, single-compone
BPAP result, for comparison.~b! Total calcium
transients forDt510 ms~dashed line!, 210 ms
~dash-dotted line! and@Ca#pre ~solid line!. All the
other parameters are as in Figs. 1 and 2.
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where I peak
1 is as defined in Eq.~10a!, I peak

2 f 5ḡmbveDt/tB
f
,

I peak
2s 5ḡmbveDt/tB

s
. The calcium currentI pre/post peaks att

5tpost for Dt.0 with amplitude I peak
1 and at t5tpre for

Dt,0 with amplitudeI peak
2 5vsI peak

2s 1v f I peak
2 f . Thus, I peak

2

decays more abruptly than its single-component-BPAP co
terpart@Fig. 3~a!#.

We can again integrate each component of the calc
currents separately.

@Ca#pre~ t !5ḡm~a1bVR!t2Q~ t2tpre!

3~e2(t2tpre)/tN2e2(t2tpre)/t!, ~12a88!

@Ca#1~ t !5I peak
1 Q~ t2tpost!$v ft3

f ~e2(t2tpost)/t1
f

2e2(t2tpost)/t!1vst3
s~e2(t2tpost)/t1

s

2e2(t2tpost)/t!%, ~12b88!

@Ca#2~ t !5Q~ t2tpre!$I peak
2 f v ft3

f ~e2(t2tpre)/t1
f
2e2(t2tpost)/t!

1I 2svst3
s~e2(t2tpre)/t1

s
2e2(t2tpre)/t!%, ~12c88!
01190
n-

m

where (t1
f )215(tB

f )211tN
21 , (t3

f )215t212tN
212(tB

f )21,
and t1

s and t3
s are defined similarly totB

s , but with tB
s re-

placingtB
f .

The effect of the slow component of the functionVB(t)
on the calcium transients is shown in Figs. 3~b! and 4~a!.
Since both@Ca#1 and @Ca#2 have the same linear depen
dence on the magnitudevs of this slow component, it prima-
rily contributes to the separation between the pre-only c
dition ~diamond!, and the associative conditions~circle and
square!.

A longer decaying tail for the postsynaptic variable pr
vides a longer time interval in which interaction with th
presynaptic variables is possible. Thus, the dynamics of
presynaptic variable, such as the calcium time constant,
will also influence the relative magnitudes of the calciu
transients for the pre-post and post-pre conditions. Inde
the combination of a faster calcium kinetics with the diffe
ent BPAP time courses enhances the difference betw
these magnitudes@Fig. 4~b!#. Therefore, a two-componen
BPAP model produces a sharper transition of the learn
curve between the post-pre LTD and the pre-post LTP. Ini
estimates of the calcium time constant in the spines wer
c-

n-
FIG. 4. ~a! Peak calcium transients as a fun
tion of the slow component of theVB functionvs

for the pre-before-post~circle!, post-before-pre
~square!, and the pre-only~diamond! conditions.
~b! Relative magnitudes of the peak calcium tra
sients, between pre and post-pre~circle!, and
post-pre and pre-post~square! conditions, as a
function of the calcium time constantt. All pa-
rameters are as in Fig. 3.
7-4
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ANALYSIS OF THE INTRASPINAL CALCIUM DYNAMIC S . . . PHYSICAL REVIEW E 69, 011907 ~2004!
the order of 70–125 ms@23,29#. However, these values ar
obtained through calcium imaging, whose results may
pend on the kinetics of the calcium indicators used, limiti
the accuracy of the estimates. Recent experimental t
niques, in which the effect of the calcium buffers are mi
mized, have lead to time constants of as low as 20 ms@24#.

IV. RATE-DEPENDENCE OF THE CALCIUM
TRANSIENTS

In the previous sections we have analyzed the calc
transients evoked by one pair of presynaptic and postsy
tic spikes, these have significant implications for STDP
low frequency. However, STDP at low frequency is not t
sole method for inducing synaptic plasticity, and in som
cases even STDP requires that the pairs of prespike
postspike are delivered above a certain frequency@7,21#.
Thus it is important to analyze the contribution of spike d
livery frequencyn, to the calcium concentration, in additio
to the relative timing effect. We analyze the case in wh
both presynaptic and postsynaptic neurons fire regularl
the same frequencyn, with the onset of the postsynapt
spike-train shifted from that of the presynaptic spike-train
Dt,1/n. Note, however, that in the most general case
number of presynaptic and postsynaptic spikes as wel
their timing differences will vary.

Recall that the NMDA current in Eq.~3! is the product
between the fraction of opened channelsf (t) and the linear-
ized Mg-block functionH„V(t)…5a1bV(t), where V(t)
5VR1VB(t) omits depolarization due to the excitato
postsynaptic potentials. For a sequence$t1

pre,t2
pre, . . . ,tN

pre%
of presynaptic spike times and$t1

post,t2
post, . . . ,tM

post% of
postsynaptic spike times, we can write

f ~ t !5 (
n51

N

AnexpS 2
t2tn

pre

tN
DQ~ t2tn

pre!, ~13!

VB~ t !5v (
m51

M21 FexpS 2
t2tm

post

tB
DQ~ t2tm

post!Q~2t1tm11
post !G

1expS 2
t2tM

post

tB
DQ~ t2tM

post!, ~14!

where N and M are, respectively, the total number of pr
spikes and postspikes before timet, andAn is the increase of
the fraction of opened channels upon each prespiken. Let
f (t) be at a levelBn immediately before the prespiken oc-
curs. If the NMDA opening is proportional to the amount
nonopened channels, thenAn5m(12Bn), where m is the
fraction of previously closed channels that open due to
presynaptic spike,m,1. Writing Bn explicitly for eachn, it
is easy to see that it satisfies the following expression:

Bn5m (
i 51

n21

e2 i /ntN5me21/ntN
12~12m!ne2n/ntN

12~12m!e21/ntN
~15!

and
01190
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B`5 lim
n→`

Bn5
me21/ntN

12~12m!e21/ntN
. ~16!

With this, Eq.~13! can be written as

f ~ t !5 (
n51

N21

~Bn1An!expS 2
t2tn

pre

tN
DQ~ t2tn

pre!

3Q~2t1tn11
pre !1~AN1BN!

3expS 2
t2tN

pre

tN
DQ~ t2tN

pre!

5 (
n

N21

@Bn~12m!1m#expS 2
t2tn

pre

tN
DQ~ t2tn

pre!

3Q~2t1tn11
pre !@BN~12m!1m#

3expS 2
t2tN

pre

tN
DQ~ t2tN

pre!. ~17!

We can define, analogously to Eq.~8! and the expression
~12a! through ~12c! from Sec. II, the following variables
I pre5ḡ(a1bVR) f (t), I 1/25ḡbVB(t) f (t), and

@Ca#pre~ t !5e2t/tE I pre~ t8!et8/tdt8, ~18a!

@Ca#1/2~ t !5e2t/tE I pre/post~ t8!et8/tdt8. ~18b!

Using Eq.~17!, Eq. ~18a! reads

@Ca#pre5ḡe2t/t~a1bVR!t2

3H ~e1/nt221! (
n51

N21

@Bn~12m!1m#etn
pre/t

1~et/t22etN
pre/t2!@BN~12m!1m#etN

pre/tNJ .

~19!

We use the approximationBn5B` , and write the time
indexes with respect to the timing of the first spike,

tn
pre5t1

pre1
n21

n
, ~20a!

tN
pre5t1

pre1
bnt c21

n
, and ~20b!

N5 b~ t2t1
pre!n c11, ~20c!

whereb c is the floor operation. Evaluating the sum, we ha
7-5



u
ke

he
-
th

irs

hu
p

ex-
nd

um
in-

he
he

yzed
ore
en
ium

-

cal-

YEUNG, CASTELLANI, AND SHOUVAL PHYSICAL REVIEW E 69, 011907 ~2004!
@Ca#pre5ḡe2t/t~a1bVR!t2@B`~12m!1m#

3H ~e1/(nt2)21!et1
pre/tF 12expS N21

nt D
12expS 1

nt D G
1expS tN

pre

tN
1

t

t2
D 2expS tN

pre

t D J , ~21!

whereN and tN
pre are defined as in Eqs.~20b! and ~20c!.

To calculate the contribution to the calcium transients d
to the interaction of the presynaptic and postsynaptic spi
we substitute the expressions~14! and ~17! into Eq. ~18b!.
Let tm

post[tn
pre1Dt and tM

post[tN
pre1Dt. The indexesm and

M will always refer to the postspikes, whilen and N will
always refer to the prespikes; for simplicity, we drop t
superscripts so thattn

pre5tn and tm
post5tm . Because the de

polarization due to each postspike does not build up,
product of the sums given by expressions~17! and~14! will
yield only four terms, due to the interaction of the pa
$(n,m21);(n,m);(N,M21);(N,M )%. These terms are

E
0

t

f ~ t8!VB~ t8!dt8

5v@B`~12m!1m#

3H (
n52

N21 E
tn

tm
expS 2

t82tn

tN
2

t82tm21

tB
1

t8

t Ddt8 ~22a!

1 (
n51

N21 E
tm

tn11
expS 2

t82tn

tN
2

t82tm

tB
1

t8

t Ddt8 ~22b!

1E
tN

t
* expS 2

t82tN

tN
2

t2tM21

tB
1

t8

t Ddt8 ~22c!

1dM ,NE
tM

t

expS 2
t82tN

tN
2

t82tM

tB
1

t8

t Ddt8%, ~22d!

where t* 5min(t,tM) and we have used thatBn5BN5B` .
Recalling expressions~20a! through ~20c!, one can easily
perform the integrations~22a! through~22d!. The remaining
sums are finite power series, therefore they converge. T
the calcium concentration due to the interaction between
esynaptic and postsynaptic spikes will be

@Ca#1/25ḡe2t/tbv@B`~12m!1m#

$~22a!1~22b!1~22c!1~22d!}, ~23!

with each of the terms being
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~22a!5t3FexpS Dt

t2
2

1

ntB
D2expS Dt21/n

tB
D G

3et1
pre/tF 12expS N21

nt D
12expS 1

nt D G ,

~22b!5t3FexpS Dt

tB
1

1

nt3
D2expS Dt

t2
D G

3et1
pre/tF 12expS N21

nt D
12expS 1

nt D G ,

~22c!5

¦

t3FexpS Dt

t2
2

1

ntB
D2expS Dt21/n

tB
D G

3expS tN
pre

t D if ~ tN
pre1Dt !,t,

t3FexpS tN
pre

t1
1

t

t3
D 2expS tN

pre

t D G
3expS Dt21/n

tB
D if ~ tN

pre1Dt !.t,

~22d!55
t3FexpS tM

post

t1
1

t

t3
D 2expS tM

post

t D G
3expS 2

Dt

tN
D if ~ tN

pre1Dt !,t

0 if ~ tN
pre1Dt !.t.

Plots of these expressions are shown in Fig. 5. As
pected, the overall calcium concentration is frequency- a
time-dependent. There is temporal integration of calci
levels, so that higher-frequency stimulations build up the
tracellular calcium concentration@Fig. 5~a!#. In addition, the
Dt dependence seen in previous sections@Fig. 5~b!# for
single pairs of prespike and postspike is retained. T
amount of temporal integration will naturally depend on t
specific values oft, tN , andtB , and so will the difference
between the pre-post and the post-pre conditions, as anal
before. For example, slower dynamics would result in m
time integration at moderate frequencies. However, giv
these constants, it is possible to set a threshold of calc
concentration between LTD and LTP~or between no-
plasticity and LTD! that would correspond to low- and high
frequency STDPs, respectively.

We now extract an expression for the dependence of
cium transients onDt and onn in the limit t→`. Let t
5tN

pre1d, where the new variabled tracks the time since the
last presynaptic spike, and defineg15ḡ(a1bVR)t2@B`(1
2m)1m# andg25ḡbVBt3@B`(12m)1m#. For t→` and
Dt,d, we have
7-6
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FIG. 5. ~a! Rate-dependence of the calciu
transients as derived in expressions~22a! through
~22d! for Dt510 ms at 5 Hz~solid line! and 10
Hz ~dashed line!. ~b! Calcium transients at 5 Hz
for Dt5110 ms ~solid line! and Dt5210 ms
~dotted line!. All parameters are as in Fig. 1.
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@Ca#~d!5g1e2d/tH ed/t21Fe1/nt22e1/nt

e1/nt21
G J 1g2e2d/t

3eDt/tBH Fe1/nt32eDt/t3

e1/nt21
G1expS 21

ntB
1

1

nt D
3FeDt/t321

e1/nt21
G1~ed/t32eDt/t3!J . ~24!

And for Dt.d,

@Ca#~d!5g1e2d/tH ed/t21Fe1/nt22e1/nt

e1/nt21
G J

1g2e2d/teDt/tBH @eDt/t321#F e21/ntB

e1/nt21
G

1Fe1/nt32eDt/t3

e1/nt21
G1~ed/t321!e21/ntBJ .

~25!

These expressions show how the peaks of the calcium t
sients depend on the timing and on the frequency of
presynaptic and postsynaptic spikes. As the frequency
creases@Fig. 6~a!# the Dt-dependent curves move up due
temporal integration, and the difference between pre-p
and post-pre conditions@Fig. 6~b!# becomes smaller.
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V. STOCHASTIC PROPERTIES OF CALCIUM INFLUX

In previous sections we have calculated the mean calc
transients under various conditions and assumptions. H
ever, synaptic transmission is a random process and trial
trial calcium transients deviate from the mean. One sourc
variability is the stochasticity of the presynaptic neurotra
mitter release. A failure of release at a given synapse wo
result in eliminating the postsynaptic calcium transient
that synapse. Although this source of variability can be s
nificant, its consequences are simple to predict, because
absence of release will result in no synaptic plasticity in
specific spine. Another source of variability is the stochas
ity of the postsynaptic opening of NMDA channels. Becau
the number of NMDAR at each synapse can be small~'10!
@30#, these fluctuations could be considerable.

In this section, we calculate the variability due toZ NM-
DAR in the postsynaptic terminal. We assume the followi
simple Markov model: the state vectorPn(t) denotes the
probability of being in each one of then possible states and
the transition matrixRn represents transition probabilitie
from state to state. For a Markov processes, the evolu
equation has the form

dPn

dt
5RnPn , ~26!

with the solution

Pn~ t !5Pn~0!expS E
0

t

Rndt8D , ~27!
c-
d
n-

n

FIG. 6. ~a! Peak calcium transients as a fun
tion of the timing between presynaptic an
postsynaptic spikes for three different freque
cies: 1 Hz~circle!, 5 Hz ~square!, and 10 Hz~tri-
angle!. ~b! Peak calcium transients as a functio
of frequency for pre-post~square! and a post-pre
~circle! conditions.
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wherePn(0) is the initial condition.
In the simplest model the process has only two sta

unboundu and open-boundo,

k1G

→
u o,

←
k21 ~28!

whereG is the glutamate concentration, andk1 andk21 are
the forward and backward time constants, respectively.

This model is clearly simplified; typically, a five-stat
model is used to account for NMDAR kinetics. However,
is sufficient for describing the single exponential decay
netics we have assumed for the NMDAR since, during
cay, G50 @see Eq.~31!, below#. The transition matrix for
this model is

R25S 2k1G k21

k1G 2k21 .D , ~29!

where G is the neurotransmitter concentration. We assu
that G has a constant, nonzero value for only a limit
amount of time. We are primarily interested in the fallin
phase (G50) of the NMDAR current.

We denote bypu andpo the probabilities of being in the
unbound and open states, respectively. Sincepu1po51 the
differential equation forpo reads

ṗo5k1G2po~k1G1k21!. ~30!

For a constant value ofG, the solution of this equation is

po~ t !5
k1G

k1G1k21
1Ce2(k1G1k21)t. ~31!

where the constantC is determined by the initial conditions
During the falling phase (G50) the time constant has th

value tN51/k21 . The solution takes the formpo(t)
5me2t/tN, wherem can now be defined more precisely
the open probability at the start of the falling phase. The to
calcium current throughZ identical NMDAR is I (t)
5( i 51

Z sigH„V(t)…, whereg is the single channel NMDAR
conductance, andsi51 when receptor is in an open stat
and 0 when in closed and unbound states. To simplify
notation we rewrite Eq. ~7! as H5V01V1Q(t
2tpost)e2(t2tpost)/tB, whereV05a1bVR andV15bv.

Calcium concentration is assumed to be governed by
~1!, therefore the average calcium concentration will be

^@Ca#~ t !&5ge2t/tE
2`

t

dt8et8/tK (
i 51

Z

si~ t8!L H~ t8!,

~32!

where ^ & denotes averaging over the probability distrib
tion of si(t).
01190
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However,^(si(t)&5Z^si(t)&5Zpo(t), thus the calcium
concentration for givenZ NMDAR is

^@Ca#~ t !&Z5Zge2t/tE
2`

t

dt8et8/tpo~ t8!H~ t8!. ~33!

Expression ~33! is similar to Eq. ~2! since I (t)
5ZgH(t)po(t). We have calculated this integral in Sec.
for the different cases~pre-only, pre-post, post-pre cond
tions!. These assumptions are equivalent to the simple M
kov model assumed here. This result is shown in Eqs.~32!
and ~33!. We note that̂ @Ca#(t)&Z5Z^@Ca#(t)&1 .

The variance for Z NMDAR has the form sZ
2(t)

5^@Ca#2(t)&Z2^@Ca#(t)&Z
2 . The second moment of the ca

cium concentration forZ NMDAR is

^@Ca#2~ t !&Z5g2e22t/tE
2`

t

dt8dt9et8/tet9/tH~ t8!H~ t9!

3K (
i 51

Z

si~ t8!(
j 51

Z

sj~ t9!L
5g2e22t/tE

2`

t

dt8dt9et8/tet9/tH~ t8!H~ t9!

3 (
i , j 51

Z

pi j
oo~ t8,t9!, ~34!

wherepi j
oo(t,t8) is the joint probability of having channeli

open at timet and channelj open at timet8. We assume
independent identical channels, therefore foriÞ j we have
pi j

oo(t,t8)5po(t)po(t8), and wheni 5 j , pii
oo(t,t8) is defined

aspoo(t,t8). We therefore have that

^@Ca#2~ t !&Z5g2e22t/tE
2`

t

dt8dt9et8/tet9/tH~ t8!H~ t9!

3@Z~Z21!po~ t8!po~ t9!1Zpoo~ t8,t9!#

5g2Z~Z21!^@Ca#~ t !&21g2Ze22t/t

3E
2`

t

dt8dt9et8/tet9/tH~ t8!H~ t9!poo~ t8,t9!.

~35!

Thus the variance of the calcium concentration forZ NM-
DAR is

sZ
2~ t !5g2Ze22t/tE

2`

t

dt8dt9et8/tet9/tH~ t8!H~ t9!

3@poo~ t8,t9!2po~ t8!po~ t9!#

5g2Ze22t/tE
2`

t

dt8dt9H~ t8!H~ t9!et8/tet9/tpoo~ t8,t9!

2Z^@Ca#~ t !&2. ~36!

We can use the Bayes rule to rewritepoo(t,t8)
5poo(tut8)po(t8). There are two variables which we need
7-8
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FIG. 7. Mean calcium tran-
sients ~solid line! and their stan-
dard deviation~dash-dotted line!
for different values ofDt, with Z
510 andm50.5. ~a! Dt510 ms,
~b! Dt5210 ms, and ~c! Dt
560 ms. The remaining param
eters are as in Fig. 2. Note that th
peaks of the calcium transient
differ from that of Fig. 2 because
m andZ are different.
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calculate from the Markov process,po(t) andpoo(tut8). The
solution for po(t) is given by Eq.~31!. We define the time
t50 as the beginning of the falling phase (G50), or tpre

50. Further, we assume an instantaneous rise time. So
t,0, po(t)50 and att50 po(0)5m. Thus for t.0 po(t)
5me2t/tN.

Similarly, poo(tut8) is the probability of being in open
state at timet given that the channel was in open state at ti
t8. We calculate this for the caset,t8>0. If t8.t this can be
solved in a similar manner topo, since in this regime it is a
stationary Markov process, and must be a function oft
2t8), and att5t, poo(t5t8ut8)51. During the falling phase
there is one directional movement fromo to u, sinceG50.
Therefore, if we know that at timet8 the channel is in an
open state, it must have been in an open state at any tit
,t8. Therefore,

poo~ tut8!5H e2(t2t8)/tN: t.t8

1: t<t8.
~37!

Note that this holds for (t,t8).0, and that by definition a
times smaller than zero the receptor is unbound. Hence,

poo~ t,t8!5H me2t/tN: t.t8

me2t8/tN: t,t8.
~38!

This expression can now be substituted into Eq.~36!, and by
using the linear approximation ofH we obtain an expressio
for sZ

2(t) that can be computed analytically. To aid in calc
lation we denote

sZ
2~ t !5Zmg2e22t/t~V0

2a112V0V1a21V1
2a3!

2Z^@Ca#~ t !&2, ~39!

where

a15E
0

t

dt8E
0

t

dt9poo~ t8,t9!et8/tet9/tQ~ t !, ~40a!

a25E
0

t

dt8E
0

t

dt9e2(t82tpost)/tBpoo~ t8,t9!, ~40b!

a35E
0

t

dt8E
0

t

dt9e2(t82tpost)/tNe(t92tpost)/tBpoo~ t8,t9!

3et8/tet9/tQ~ t82tpost!Q~ t92tpost!. ~40c!
01190
for

e

e

-

In Appendix A we analytically calculate the form of th
termsa1 , a2 anda3 . Although the analytical form is com
plex, the consequences are simple and significant. To q
tify the dependence of the relative variability onDt, we
compute the coefficient of variation,CV(Z)5sZ /^@Ca#
3(t)&Z , where both@Ca#(t)Z andsZ(t) are measured at the
time t where ^@Ca#(t)&Z is maximal. As expected,CV(Z)
5CV(1)/AZ. Thus the variability is significant only at rela
tively low Z. In Fig. 7 we shoŵ @Ca#(t)&Z andsZ , for Dt
5210, 10, and 60 ms. In all cases both the mean andsZ

change over time. The peak of^@Ca#(t)&Z for Dt5210 ms
and Dt560 ms are similar. However, the magnitude of t
variability, sZ , is significantly larger atDt560 ms than at
Dt5210 ms.

When Dt,0, CV is low and decreases asDt→0 from
below. ForDt.0, CV increases asDt increases~Fig. 8!. It is
interesting to compare theCV for values ofDt,0 andDt
.0 which have similar peak calcium levels. For examp
for Dt5210 ms,CV(10)50.34 and forDt560 ms, which
has a similar peak calcium level,CV(10)50.51. Therefore
CV(Z510,Dt560)/CV(Z510,Dt5210)'1.5. Because
CV(Z)5CV(1)/AZ, the relative amplitudes ofCV for vary-
ing Dt are independent ofZ.

The variability of calcium transients also depends onm
~Fig. 9!, decreasing asm increases, for allDt. The variablem
is the probability of glutamate binding to postsynaptic rece
tors given a presynaptic spike, and can be taken to be

FIG. 8. Coefficient of variation as a function ofDt for Z510
andm50.5. Note that the variability decreases with increasing v
ues of tN . Shown are the plots fortN550 ms ~circle!, tN

575 ms~square!, andtN5100 ms~diamond!.
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presynaptic probability of release. Thus, as the presyna
probability of release increases,CV decreases.

VI. DISCUSSION

Calcium transients due to NMDA currents are believed
play a major role in many forms of synaptic plasticity. W
have recently shown that a model based on these trans
can account for various different plasticity-induction prot
cols @16#. In this paper, we computed analytically the ca
cium dynamics evoked by pairs of presynaptic and posts
aptic spikes under different conditions, so that the variab
that control calcium transients and impact synaptic plasti
can be investigated.

We showed that the peak of the calcium transients
pends on theDt: for Dt.0, the peak concentration deca
with the time constanttN of the NMDAR, and forDt,0, it
decays with the time constanttB of the BPAP function
VB(t). Therefore, if spike-time-dependent plasticity inde
depends on the calcium transients,tN andtB will determine
the width of the pre-post LTP and the post-pre LTD wi
dows, respectively. These results were confirmed by sim
tions, in which the approximations we used in the calcu
tions were relaxed. TheDt dependence of the peak calciu
transient is similar in the more complex and realistic ca
where the BPAP dynamics is composed of a fast and a s
component: the difference lies in theDt,0 case, which now
depends on the combination of the two time constants.
two-component BPAP allows a sharper transition betw
the post-before-pre and the pre-before-post STDP windo
which is further enhanced by a fast calcium dynamics.
also showed that, besides the timing of the prespike
postspike, the peak values of the calcium transients also
pend on the frequencyn of the presynaptic and postsynapt
conditioning, increasing for greater values ofn. However, at
higher frequencies, the dependence onDt decreases. The
amount of calcium built up at a given frequency depends
the system parameters; slower time constants results in m
temporal integration. Temporal integration of calcium tra
sients as described here can explain why, in some cases
induction of STDP is frequency-dependent.

One of the predictions of the unified calcium model is th
there exists a pre-before-post LTD for values ofDt greater
than those that elicit LTP@16#. This has been shown exper
mentally by some investigators@20#; others have only placed
a small number of data points in this region@8,21#. In all
published STDP experiments, there is a large variability
the magnitude and the sign of synaptic plasticity across
different values ofDt. It would therefore be difficult to as
sess the existence of this type of LTD without a large amo
of data. The variability encountered in the experiments in
cates that it should be important to examine the variation
the calcium transients, in addition to their mean.

We calculated the variance of the calcium transients
showed that, for a small numberZ of NMDAR, this variance
can be quite significant. There are indications that the nu
ber of NMDAR in the dendrite is indeed small~'10! @30#.
Further, we showed that theCV increases monotonically with
Dt, for Dt.0. These fluctuations can have significant imp
01190
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cations on the outcome of downstream processes depen
on calcium, such as phosphorylation or other seco
messenger cascades upon which plasticity relies.

Previously, several authors have simulated and analy
dynamical models of synaptic plasticity that can lead
STDP @9,12,14,15,31#. These models typically bypass de
tailed descriptions of the physiology and biochemistry und
lying synaptic plasticity. Recently, biophysical models ha
been receiving increasing focus@10,11,13,16,32#. These
more mechanistic approaches have allowed one to show
various different induction protocols can be accounted for
a single set of assumptions regarding the dependence of
ticity on calcium concentrations@16#. In these models, plas
ticity is a highly nonlinear function of calcium concentratio
Therefore, fluctuations of calcium transients will not on
add spread to the resulting LTD and LTP but will also sh
their mean~the mean of the solution is not equivalent to t
solution given the mean calcium level!. For example, in the
unified calcium model@16#, the sign and magnitude of syn
aptic plasticity is determined by a saturated U-shaped fu
tion of calcium concentration. When calcium falls below
thresholdud , no plasticity occurs, when it falls betweenud
andup , up.ud , LTD is induced, and for calcium aboveup ,
LTP is induced. Thus, in the LTD region, if the spread of t
calcium is of the order ofup2ud , occasional LTP can still
happen. We showed an explicit example for the cases ofDt
5210 ms andDt560 ms, where the mean peak calciu
concentrations are similar, but the variability for the latter
larger. If this mean calcium is in the LTD range, it is like
that the observed phenomenon is that the LTD is stron
and more robust forDt5210 ms than forDt560 ms.

This work is based on several simplifying assumptio
This allows us a qualitative understanding of the aspects
calcium dynamics that are crucial for the induction of sy
aptic plasticity. Incorporation of more realistic features, su
as those assumed in the unified calcium model, would pr
ably yield quantitatively more precise results. For example
double-component NMDAR decay would allow for mo
calcium build up without sacrificing the temporal asymme
between pre-post and post-pre conditions. However, we
lieve that, despite the constraints of analytical tractabil
this study can serve as a basis for future models that aim
formalize the biophysical basis of synaptic plasticity.

FIG. 9. Coefficient of variation forZ510 as a function ofm, for
three different values ofDt: Dt5210 ms ~diamond!, Dt510 ms
~square!, andDt560 ms~circle!. As m increases,CV decreases.
7-10
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APPENDIX A: VARIANCE CALCULATION

Using the definition in Eq.~40a! through Eq.~40c! we
obtain

a15F E
0

t

dt8E
t8

t

dt9e2t9/tNet8/tet9/t

1E
0

t

dt8E
0

t8
dt9e2t8/tNet8/tet9/tGQ~ t !

5F E
0

t

dt8et8/tt2~et/t22et8/t2!

1E
0

t

dt8et8/t2t~et8/t21!dt8GQ~ t !

5Fet/t2t2t~et/t21!2t2E
0

t

dt8et8/t4

1tE
0

t

dt8et8/t42tE
0

t

dt8et8/t2GQ~ t !

5@et/t4~t2t2t2t41tt4!22et/t2t2t

1~t2t42tt41t2t!#Q~ t !, ~A1!

FIG. 10. The error estimation for the linear approximation of t
H function. ~a! The originalH function ~dotted line! and its linear
approximation~solid line! in the interval@270,210# mV. ~b!, ~c!,
and ~d! The calcium transients elicited by the pre-only, post-p
(Dt5210 ms), and pre-post (Dt510 ms) conditions, respectively
for the full expression~dotted line! and for the linear approximation
~solid line!.
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wheret4
2152t212tN

21 .

a25etpost/tB@t5~t2t2!~et/t52et̃ /t5!2tt3~et/t32et̃ /t3!

1t2t6et/t2~et/t62et̃ /t6!#Q~ t2 t̃ !, ~A2!

wheret3 is as defined before,t5
2152t212tN

212tB
21 , t6

21

5t212tB
21 , and

t̃ 5H tpost tpost.0

0 tpost<0.
~A3!

Finally,

a352e2tpost/tBt6t3@et/t62et/t3et̃ /t61et̃ /t6#Q~ t2 t̃ !. ~A4!

APPENDIX B: NUMERICAL ESTIMATION OF THE
ERROR RESULTING FROM THE LINEAR

APPROXIMATION OF H
In the simulations, we used the following form for th

voltage-dependence of the NMDAR:

H~V!5
V2Vrev

11
e20.062V

3.57

, ~B1!

whereVrev5130 mV.
Such functional dependence captures the qualitative n

linear dependence of the NMDAR on the voltage, althou
the reversal potential for calcium might be inaccurate at
values close toVrev. In our analysis, we approximatedH as
being linear. The fit used is shown in Fig. 10~a!. We see that
over the relevant range~@270 0#! this is a relatively good
approximation.

In panels~b!–~d! of Fig. 10 we compare the numericall
extracted calcium transients~dashed line!, using the nonlin-
ear H and the analytical results obtained for the linear a
proximation ~solid line!. At rest @Fig. 10~b!#, the linear ap-
proximation significantly underestimates the magnitudes
the transients, because this is where the linear fit deviates
most from the true curve. However, in the working regim
~@210, 10# mV!, the approximation can be considered a
equate.

Let Eq. ~B1! be rewritten asH(v)5a1bV as in Eq.~7!.
The parameters of linearization area50.1031/ḡ and b
50.0015/ḡ, where ḡ521023 is the average NMDA con-
ductance.
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